Object-Based Image Procedures for Assessing the Solar Energy Photovoltaic Potential of Heterogeneous Rooftops Using Airborne LiDAR and Orthophoto

Author:

Tiwari Arti,Meir Isaac A.,Karnieli ArnonORCID

Abstract

Available renewable energy resources play a vital role in fulfilling the energy demands of the increasing global population. To create a sustainable urban environment with the use of renewable energy in human habitats, a precise estimation of solar energy on building roofs is essential. The primary goal of this paper is to develop a procedure for measuring the rooftop solar energy photovoltaic potential over a heterogeneous urban environment that allows the estimation of solar energy yields on flat and pitched roof surfaces at different slopes and in different directions, along with multi-segment roofs on a single building. Because of the complex geometry of roofs, very high-resolution data, such as ortho-rectified aerial photography (orthophotos), and LiDAR data have been used to generate a new object-based algorithm to classify buildings. An overall accuracy index and a Kappa index of agreement (KIA) of 97.39% and 0.95, respectively, were achieved. The paper also develops a new model to create an aspect-slope map, which combines slope orientation with the gradient of the slope and uses it to demonstrate the collective results. This study allows the assessment of solar energy yields through defining solar irradiances in units of pixels over a specific time period. It might be beneficial in terms of more efficient measurements for solar panel installations and more accurate calculations of solar radiation for residents and commercial energy investors.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. IEA World Energy Outlook 2013;Olejarnik,2013

2. Spatial mapping of renewable energy potential

3. Energy transitions or additions?

4. 2014 World Energy Issues Monitor;De L’Énergie,2014

5. Renewable Capacity Statistics 2019,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3