Agronomic Traits Analysis of Ten Winter Wheat Cultivars Clustered by UAV-Derived Vegetation Indices

Author:

Marino Stefano,Alvino ArturoORCID

Abstract

Timely and accurate estimation of crop yield variability before harvest is crucial in precision farming. This study is aimed to evaluate the ability of cluster analysis based on Vegetation Indices (VIs) that were obtained from UAVs to predict the spatial variability on agronomic traits of ten winter wheat cultivars. Five VIs groups were identified and the ground truth yield-related data were analyzed for clusters validation. The yield data revealed a value of 6.91 t ha−1 for the first cluster with the highest VIs value and a decrease of −12%, −21%, and −27% for the 2nd, 3rd, and 4th clusters; respectively; the 5th cluster; with the lowest VIs value showed the lower yield values (4 t ha−1). Agronomic traits, such as dry biomass, spike numbers, and weight were grouped according to VIs clusters and analyzed and showed the same trends. The analysis of spatial distribution and agronomic data of the ten cultivars within the single clusters highlighted that the most productive varieties showing a greater value of spike weight and numbers and a greater presence of areas with high values of VIs and vice versa the less productive once, though two cultivars showed productions not linked to cluster classification and high data range variability were recorded. Cluster identified by high-resolution UAV vegetation indices can be a valid strategy although its effectiveness is closely linked to the cultivar component and, therefore, requires extensive verification.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3