Quantification of Annual Settlement Growth in Rural Mining Areas Using Machine Learning

Author:

Dietler DominikORCID,Farnham AndreaORCID,de Hoogh KeesORCID,Winkler Mirko S.ORCID

Abstract

Studies on annual settlement growth have mainly focused on larger cities or incorporated data rarely available in, or applicable to, sparsely populated areas in sub-Saharan Africa, such as aerial photography or night-time light data. The aim of the present study is to quantify settlement growth in rural communities in Burkina Faso affected by industrial mining, which often experience substantial in-migration. A multi-annual training dataset was created using historic Google Earth imagery. Support vector machine classifiers were fitted on Landsat scenes to produce annual land use classification maps. Post-classification steps included visual quality assessments, majority voting of scenes of the same year and temporal consistency correction. Overall accuracy in the four studied scenes ranged between 58.5% and 95.1%. Arid conditions and limited availability of Google Earth imagery negatively affected classification accuracy. Humid study sites, where training data could be generated in proximity to the areas of interest, showed the highest classification accuracies. Overall, by relying solely on freely and globally available imagery, the proposed methodology is a promising approach for tracking fast-paced population dynamics in rural areas where population data is scarce. With the growing availability of longitudinal high-resolution imagery, including data from the Sentinel satellites, the potential applications of the methodology presented will further increase in the future.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Migration to two mines in Laos

2. Perspectives on migration patterns in Ghana's mining industry

3. Projects and People: A Handbook for Addressing Project-Induced In-Migration,2009

4. Large Mines and the Community: Socioeconomic and Environmental Effects in Latin America, Canada, and Spain;Loayza,2001

5. Health impact assessment of industrial development projects: a spatio-temporal visualization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3