Research on Lane Changing Game and Behavioral Decision Making Based on Driving Styles and Micro-Interaction Behaviors

Author:

Ye Ming,Li Pan,Yang Zhou,Liu YonggangORCID

Abstract

Autonomous driving technology plays an essential role in reducing road traffic accidents and ensuring more convenience while driving, so it has been widely studied in industrial and academic communities. The lane-changing decision-making process is challenging but critical for ensuring autonomous vehicles’ (AVs) safe and smooth maneuvering. This paper presents a closed-loop lane-changing behavioral decision-making framework suitable for AVs in fully autonomous driving environments to achieve both safety and high efficiency. The framework is based on a complete information non-cooperative game theory. Moreover, we attempt to introduce human driver-specific driving styles (reflected by aggressiveness types) and micro-interaction behaviors for both sides of the game in this model, enabling users to understand, adapt, and utilize intelligent lane-changing techniques. Additionally, a model predictive control controller based on the host-vehicle (HV) driving risk field (DRF) is proposed. The controller’s optimizer is used to find the optimal path with the lowest driving risk by using its optimizer and simultaneously adjusting its control variables to track the path. The method can synchronize path planning and motion control and provide real-time vehicle state feedback to the decision-making module. Simulations in several typical traffic scenarios demonstrate the effectiveness of the proposed method.

Funder

Chongqing Technology Innovation and Application Development Project

State Key Laboratory of Vehicle NVH and Safety Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Longitudinal and lateral dynamics control of automatic lane change system

2. A Review of Motion Planning Techniques for Automated Vehicles

3. Enabling Safe Autonomous Driving in Real-World City Traffic Using Multiple Criteria Decision Making

4. Intention-aware online POMDP planning for autonomous driving in a crowd;Bai;Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),2015

5. Situation assessment in tactical lane change behavior planning for automated vehicles;Ulbrich;Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3