An Edge-Based Selection Method for Improving Regions-of-Interest Localizations Obtained Using Multiple Deep Learning Object-Detection Models in Breast Ultrasound Images

Author:

Daoud Mohammad I.ORCID,Al-Ali AamerORCID,Alazrai RamiORCID,Al-Najar Mahasen S.ORCID,Alsaify Baha A.ORCID,Ali Mostafa Z.ORCID,Alouneh SahelORCID

Abstract

Computer-aided diagnosis (CAD) systems can be used to process breast ultrasound (BUS) images with the goal of enhancing the capability of diagnosing breast cancer. Many CAD systems operate by analyzing the region-of-interest (ROI) that contains the tumor in the BUS image using conventional texture-based classification models and deep learning-based classification models. Hence, the development of these systems requires automatic methods to localize the ROI that contains the tumor in the BUS image. Deep learning object-detection models can be used to localize the ROI that contains the tumor, but the ROI generated by one model might be better than the ROIs generated by other models. In this study, a new method, called the edge-based selection method, is proposed to analyze the ROIs generated by different deep learning object-detection models with the goal of selecting the ROI that improves the localization of the tumor region. The proposed method employs edge maps computed for BUS images using the recently introduced Dense Extreme Inception Network (DexiNed) deep learning edge-detection model. To the best of our knowledge, our study is the first study that has employed a deep learning edge-detection model to detect the tumor edges in BUS images. The proposed edge-based selection method is applied to analyze the ROIs generated by four deep learning object-detection models. The performance of the proposed edge-based selection method and the four deep learning object-detection models is evaluated using two BUS image datasets. The first dataset, which is used to perform cross-validation evaluation analysis, is a private dataset that includes 380 BUS images. The second dataset, which is used to perform generalization evaluation analysis, is a public dataset that includes 630 BUS images. For both the cross-validation evaluation analysis and the generalization evaluation analysis, the proposed method obtained the overall ROI detection rate, mean precision, mean recall, and mean F1-score values of 98%, 0.91, 0.90, and 0.90, respectively. Moreover, the results show that the proposed edge-based selection method outperformed the four deep learning object-detection models as well as three baseline-combining methods that can be used to combine the ROIs generated by the four deep learning object-detection models. These findings suggest the potential of employing our proposed method to analyze the ROIs generated using different deep learning object-detection models to select the ROI that improves the localization of the tumor region.

Funder

Seed Grant Program, Deanship of Scientific Research, German Jordanian University, Amman, Jordan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3