A Study and Implementation of Inductive Power Transfer System Using Hybrid Control Strategy for CC-CV Battery Charging

Author:

He Liangxi1,Wang Xiaoqiang2,Lee Chi-Kwan1

Affiliation:

1. Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China

Abstract

In this paper, a hybrid control strategy is studied and implemented on an Inductive Power Transfer (IPT) system to simultaneously realize zero-voltage switching (ZVS) and constant current (CC) and constant voltage (CV) battery charging. A steady-state analysis of pulse frequency modulation was conducted, based on the characteristic of voltage gain versus switching frequency, and CC and CV charging modes were promised. The ZVS of the inverter was obtained by satisfying the minimum requirement of full discharge of the junction capacitor on the MOSFETs using a commutation current during the dead-time interval. Two control degrees of freedom are needed to realize the two control targets. This hybrid control strategy adopts a self-oscillating (SO) control to achieve ZVS and phase shift (PS) control and a constant output for the series–series (SS)-compensated IPT system. To validate the hybrid control strategy, a 1.6 kW prototype with 360–440 V input voltage and 250–400 V output voltage was built and the experimental results show that the peak efficiency can reach 96.1%. Compared with the conventional variable frequency (VF) control, the hybrid control method proves that an additional control variable can fulfill the control target in a more flexible manner, which makes the switching frequency close to the resonant frequency during the charging process, minimizing the reactive current in the resonant tank and improving system efficiency.

Funder

University Grants Committee

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control Strategy of Lithium Battery Charging System Based on Improved Particle Swarm Optimized PID Algorithm;2023 19th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD);2023-07-29

2. High-Gain Step-Down DC–DC Converter Employed in a Battery Charging Application;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3