Multi-Objective Optimization for Ranking Waste Biomass Materials Based on Performance and Emission Parameters in a Pyrolysis Process—An AHP–TOPSIS Approach

Author:

Howari Haidar1,Parvez Mohd2,Khan Osama3,Alhodaib Aiyeshah4ORCID,Mallah Abdulrahman5ORCID,Yahya Zeinebou4

Affiliation:

1. Department of Physics, Deanship of Educational Services, Qassim University, Buraidah 51452, Al-Qassim, Saudi Arabia

2. Department of Mechanical Engineering, Al-Falah University, Faridabad 121004, India

3. Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi 110025, India

4. Department of Physics, College of Science, Qassim University, Buraidah 51452, Al-Qassim, Saudi Arabia

5. Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Al-Qassim, Saudi Arabia

Abstract

The current era of energy production from agricultural by-products comprises numerous criteria such as societal, economical, and environmental concerns, which is thought to be difficult, considering the complexities involved. Making the optimum choice among the various classes of organic waste substances with different physio-chemical characteristics based on their appropriateness for pyrolysis is made possible by a ranking system. By using a feasible model, which combines several attributes of decision-making processes, it is possible to select the ideal biomass feedstock from a small number of possibilities based on relevant traits that have an impact on the pyrolysis. In this study, a multi-criteria decision-making (MCDM) technique model based on the weight calculated from the analytical hierarchy process (AHP) tool has been applied to obtain a ranking of different types of agro-waste-derived biomass feedstock. The technique of order preference by similarity to ideal solution (TOPSIS) is used to examine the possibilities of using/utilizing locally available biomass. From this point of view, multi-criteria are explained to obtain yield maximum energy. The suggested approaches are supported by the experimental findings and exhibit a good correlation with one another. Six biomass alternatives and eight evaluation criteria are included in this study. Sawdust is the highest-ranking agricultural waste product with a closeness coefficient score of 0.9 out of the six biomass components that were chosen, followed by apple bagasse with 0.8. The hybrid approach model that has been built can be evaluated and validated for the ranking method using the Euclidian distance-based approximation. This study offers a unique perspective on decision-making, particularly concerning thermo-chemical conversion.

Funder

Ministry of Education Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3