The Influence of CO2 Injection into Manure as a Pretreatment Method for Increased Biogas Production

Author:

Žalys Bronius1ORCID,Venslauskas Kęstutis2ORCID,Navickas Kęstutis2ORCID,Buivydas Egidijus1ORCID,Rubežius Mantas2

Affiliation:

1. Lithuanian Energy Institute, Breslaujos g. 3, LT-44403 Kaunas, Lithuania

2. Faculty of Engineering, Vytautas Magnus University, K. Donelaičio g. 58, LT-44248 Kaunas, Lithuania

Abstract

Manure is considered a by-product or organic waste in cattle, pig, chicken or other animal breeding farms, which can be a valuable product as compost or feedstock for biogas production. The production of biomethane from biogas always copes with the formation of carbon dioxide (CO2) as a by-product. This CO2 may be recycled through the feedstock as a pretreatment to maximize homogeneity, and improve biogas yield and biogas quality. The CO2-pretreatment process of cow manure (CoM), chicken manure (ChM) and pig manure (PM) was performed in the continuously fed agitated reactor at 25 °C temperature and ambient barometric pressure. Biogas yield and composition exploration were performed in an anaerobic continuous feeding digester with controlled mesophilic (37 °C) environmental conditions. The CO2 pretreated PM, CoM and ChM yielded 234.62 ± 10.93 L/kgVS, 82.01 ± 3.19 L/kgVS and 374.53 ± 9.27 L/kgVS biomethane from feedstock volatile solids, respectively. The biomethane yield from CO2 pretreated CoM, ChM and PM achieved was higher over untreated manure by +33.78%, +28.76% and +21.78%, respectively. The anaerobic digestion process of tested feedstocks was stable, and the pH of the substrate was kept steady at a pH of CoM 7.77 ± 0.02, PM 8.07 ± 0.02 and ChM 8.09 ± 0.02 during all the experiment. The oxidation-reduction potential after pretreatment was within the optimal range (−255 ± 39.0 to −391 ± 16.8 mV) for anaerobic digestion. This process also had a positive effect on the energy generated from the feedstock, with ChM showing the greatest increase, from 2.38 MJ/kg to 3.06 MJ/kg.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3