Hydrodynamic Characteristics of Strong, Unsteady Open-Channel Flow

Author:

Hu Keke1,Hu Jian2,Huang Tianwei3,Ye Xiangwei4,Jiang Shu5,Lin Ying-Tien367ORCID

Affiliation:

1. Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China

2. Wenzhou Communications Develop Group Co., Ltd., Wenzhou 325000, China

3. Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China

4. Qiantang River Basin Management Center of Zhejiang Province, Hangzhou 310000, China

5. School of Economics and Management, Zhejiang Ocean University, Zhoushan 316022, China

6. Engineering Research Center of Oceanic Sensing Technology and Equipment, Zhejiang University, Ministry of Education, Zhoushan 316021, China

7. Donghai Laboratory, Zhoushan 316021, China

Abstract

Due to climate change, the intensity of extreme rainfall has been observed to increase with a shorter duration, causing flash floods (strong, unsteady flow) that lead to serious loss of life and economic damage all over the world. In this study, by repeating the same flume experiments twenty times over a bare bed or with a submerged vane installed, the hydrodynamic characteristics of a strong, unsteady open-channel flow were investigated. Acoustic Doppler velocimetry (ADV) was used to measure the instantaneous three-dimensional velocity, and the ensemble average method was then adopted to obtain the time-varying mean flow velocities. Reynolds decomposition was applied to disintegrate the instantaneous velocity to time-varying average velocity and fluctuating velocity. Turbulence characteristics such as turbulent intensity, turbulent bursting, and power spectral density (PSD) were analyzed against water depth variations. The results show that the loop pattern of the streamwise velocity against the water depth variations could significantly affect the turbulence characteristics of unsteady flow. Near the bed, the peaks of the turbulent intensity and the TKE lag behind the peak of the water depth. The PSD revealed that the turbulent energy increases at the rising and falling stages were due to the generation of small-scale turbulence vortices or eddies. As a submerged vane was present, the increase in the angle of attack caused the increase in the turbulent intensity and TKE, which means that the induced vortex became stronger and the wake region was larger. When the angle of attack was equal to 20°, the TKE abruptly enlarged in the falling stages, implying the breaking-up of the induced vortex. The PSD of the transverse fluctuation velocity showed multiple spikes at the high-frequency part, possibly denoting the shedding frequency from the induced vortex. Further downstream, behind the submerged vane, the peak frequencies of the PSD became imperceptible, likely because of the induced vortex decays or other factors such as the turbulence generated from the free surface or the channel bed mixing with the turbulence from the induced vortex.

Funder

Science and Technology Plan Project of Zhejiang Provincial Department of Water Resources

Science Foundation of Donghai Laboratory

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3