Affiliation:
1. School of Civil Engineering and Architecture, Hainan University, Haikou 570228, China
Abstract
Damage to nonstructural components, such as air ducts, in buildings during earthquakes, which are more fragile than single-layer reticulated domes, has a significant impact on the sustainability of the building’s functionality. To study the coupling effect and failure mode of a single-layer reticulated dome with an air duct system, then, simplified finite element models of air ducts and flange bolt joints were established and validated against the solid element model. Moreover, the simplified finite element models of support hangers were also built and validated against the existing experiment. Three kinds of support hanger layout schemes were studied to analyze the dynamic characteristics and seismic responses of a single-layer reticulated dome with an air duct system from earthquakes at different intensities. The results showed that the simplified finite element model can effectively simulate the coupling effect and failure mode of the single-layer reticulated dome with an air duct system. The coupling effect of the air duct system reduces the natural vibration frequency in the dome and increases the number of damaged members in the dome by strong earthquakes. The rate of falling air ducts with all the seismic support hangers is the highest compared to the two other support hanger layout schemes.
Funder
Hainan Provincial Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction