Calcium Leaching of 3D-Printed Cement Paste Exposed to Ammonium Chloride Solutions

Author:

Yang Huashan12ORCID,Che Yujun1ORCID,Luo Jie3

Affiliation:

1. School of Materials and Architecture Engineering, Guizhou Normal University, Guiyang 550025, China

2. Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guiyang 550025, China

3. China Construction Fourth Division Guizhou Investment and Construction Co., Ltd., Guiyang 550081, China

Abstract

Understanding the degradation of 3D-printed cement paste (3DPC) is essential to evaluate changes in the long-term durability of concrete structures subjected to aggressive water. However, the degradation mechanism of 3DPC has yet to be reported, as the microstructure and pore characteristics of 3DPC are very different from those of its cast counterparts. This work studies the performance anisotropy of 3DPC due to calcium leaching to investigate the degradation mechanism. Samples with aggregate micro fines (AMF) and fly ash (FA) were prepared. A 6 mol/L NH4Cl solution was used in the accelerated experiment. At specific leaching durations, performances were tested on the samples in different leaching directions. The performance anisotropy of 3DPC exposed to aggressive water was investigated by comparing the changes in bulk density, water absorption, leaching depths, and compressive strength in different leaching directions. X-ray diffraction (XRD), differential thermal gravity-thermogravimetric (DTG−TG), and mercury intrusion porosimetry (MIP) were used to characterize the changes in hydration products and pore structure in different leaching directions. The results show that the performances of 3DPC in aggressive water have a significant anisotropic behavior. The evolution of pore defects and hydration products mainly governs the performance anisotropy of degraded 3DPC. The remaining hydration products of the surface of 3DPC leached in the Z direction are fewer than the other two directions because calcium ions leached in the Z direction are difficult to compensate through weak interfaces between layers. The test results clearly show that the calcium leaching mechanism of 3DPC in aggressive water is directly influenced by the hydration products, such as portlandite (CH) and C-S-H, and the pores. The current study may help us understand the degradation mechanism of 3DPC to assess its durability performance anisotropy.

Funder

Guizhou Provincial Science and Technology Foundation

Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3