The Impact of Vegetation Canopy on the Outdoor Thermal Environment in Cold Winter and Spring

Author:

Chen Hankai12,Liu Rui12ORCID,Zhang Yu1ORCID

Affiliation:

1. School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China

2. Yangtze River Delta National Observatory of Wetland Ecosystem, Shanghai Normal University, Shanghai 200234, China

Abstract

The current study investigated the impact of vegetation canopy on the outdoor thermal environment in cold winter and spring, a less-explored aspect of its climate effects. Firstly, we conducted on-site observations of meteorology parameters on a campus in a hot summer and cold winter region. Then the ENVI-met microclimate simulation model was utilized to simulate the air temperature, relative humidity, wind speed and direction, and solar radiation of typical winter and spring days. Furthermore, the PET index was calculated to evaluate the thermal conditions. Our findings revealed that during the daytime, the vegetation canopy raised air temperature and relative humidity, reduced wind speed, and mitigated solar radiation. Solar radiation emerged as the primary factor affecting thermal comfort in the cold winter and spring. The presence of deciduous broad-leaved vegetation notably reduced cold discomfort and improved thermal comfort in the cold winter and spring. Finally, we propose replacing evergreen broad-leaved vegetation with deciduous broad-leaved vegetation in hot summer and cold winter regions to ensure year-round thermal comfort, especially in the cold winter and spring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3