Decision Support Framework for Optimal Reservoir Operation to Mitigate Cyanobacterial Blooms in Rivers

Author:

Kim Jongchan123,Jonoski Andreja1ORCID,Solomatine Dimitri P.13ORCID,Goethals Peter L. M.4

Affiliation:

1. Department of Hydroinformatics and Socio-Technical Innovation, IHE Delft Institute for Water Education, 2611 AX Delft, The Netherlands

2. K-water, Daejeon 34350, Republic of Korea

3. Water Resources Section, Delft University of Technology, 2628 CD Delft, The Netherlands

4. Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium

Abstract

Flow control flushing water from reservoirs has been imposed in South Korea for mitigating harmful cyanobacterial blooms (CyanoHABs) in rivers. This measure, however, can cause water shortage in reservoirs, as the measure adopting this flow control may require an additional amount of water which exceeds the water demand allocated to the reservoirs. In terms of sustainability, a trade-off between improving water quality and alleviating water shortage needs to be considered. This study aimed at establishing a practical framework for a decision support system for optimal joint operation of the upstream reservoirs (Andong and Imha) to reduce the frequency of CyanoHABs in the Nakdong River, South Korea. Methodologically, three models were introduced: (1) a machine learning model (accuracy 88%) based on the k-NN (k-Nearest Neighbor) algorithm to predict the occurrence of CyanoHABs at a selected downstream location (the Chilgok Weir located approximately 140 km downstream from the Andong Dam), (2) a multiobjective optimization model employing NSGA-II (Nondominated Sorting Genetic Algorithm II) to determine both the quantity and quality of water released from the reservoirs, and (3) a river water quality model (R2 0.79) using HEC-RAS to simulate the water quality parameter at Chilgok Weir according to given upstream boundary conditions. The applicability of the framework was demonstrated by simulation results using observational data from 2015 to 2019. The simulation results based on the framework confirmed that the frequency of CyanoHABs would be decreased compared with the number of days when CyanoHABs were observed at Chilgok Weir. This framework, with a combination of several models, is a novelty in terms of efficiency, and it can be a part of a solution to the problem of CyanoHABs without using an additional amount of water from a reservoir.

Funder

Delft University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3