Volume Expansion Rate Index Reveals the Damage Process of Surrounding Rock: A Machine Learning-Based Effectiveness Evaluation

Author:

Wen Jiaqi12,Tang Lei12,Deng Chang12,Zhan Qibing23,Wang Yukun24

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210029, China

2. Department of Materials and Structures, Nanjing Hydraulic Research Institute, Nanjing 210029, China

3. School of Water Resources and Hydropower, Wuhan University, Wuhan 430072, China

4. School of Civil Engineering, Tianjin University, Tianjin 300350, China

Abstract

Energy sustainability and the establishment of the ‘national water network’ are all inseparable from the construction of underground engineering. Monitoring indices for the surrounding rock are vital for the safety management of underground engineering construction, which determines the actual state of the surrounding rock. The complexity of deep underground engineering construction leads to many situations that cannot be predicted and explained by existing experience. Therefore, it is necessary to identify which monitoring index best represents the surrounding rock damage. Currently, there are no advanced and convenient effectiveness evaluation schemes for surrounding rock monitoring information. To fill the technical gap, this study introduces the volume expansion rate (VER) index for surrounding rock and proposes a machine learning (ML)-based evaluation scheme for the effectiveness of monitoring indices. First, six conditions with different in situ stresses are designed, and tunnel excavation monitoring tests are conducted. Second, the surrounding rock damage determination experiments using the ML classification algorithm are performed, and the accuracy matrix and index significance scores are obtained. The evaluation results show that: (1) The multi-class logistic regression algorithm is more suitable for determining surrounding rock damage with high accuracy and more appropriate significance evaluation outcomes. (2) Under the higher in situ stress condition, the tangential stress is more sensitive to the surrounding rock damage. (3) As the in situ stress increases, the significant monitoring indices demonstrate a transition ‘from shallow to deep, from regional damage to point failure’, describing the instability of the surrounding rock and inspiring a new instability criterion for surrounding rock.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Public Welfare Research Institutes of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3