Machine-Learning-Based Spectroscopic Technique for Non-Destructive Estimation of Shelf Life and Quality of Fresh Fruits Packaged under Modified Atmospheres

Author:

Mohammed Maged12ORCID,Srinivasagan Ramasamy3ORCID,Alzahrani Ali3ORCID,Alqahtani Nashi K.14ORCID

Affiliation:

1. Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Menoufia University, Shebin El Koum 32514, Egypt

3. Computer Engineering Department, College of Computer Sciences & Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia

4. Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

The safety and quality of fresh fruits deserve the greatest attention, and are a priority for producers and consumers alike. Modern technologies are crucial to accurately estimating and predicting fresh fruits’ quality and shelf life, to optimize supply chain management. Modified atmosphere packaging (MAP) is an essential method that maintains quality parameters and increases the shelf life of fresh fruits by reducing their ripening rates. This study aimed to develop a cost-effective, non-destructive technique using tiny machine learning (TinyML) and a multispectral sensor to predict/estimate the quality parameters and shelf life of packaged fresh dates under the natural atmosphere (Control), vacuum-sealed bags (VSBs), and MAP with different gas combinations: 20% CO2 + N balance (MAP1), and 20% CO2 + 10% O2 + N balance (MAP2). The shelf life and quality parameters of the packaged fresh dates (pH, total soluble solids (TSSs), sugar content (SC), moisture content (MC), and tannin content (TC)) were evaluated under different storage temperatures and times. A multispectral sensor (AS7265x) was utilized to correlate the fruit quality parameters with spectrum analysis under the same storage conditions, to prepare the dataset to train the prediction models. The prediction models were trained in the Edge Impulse Platform, and deployed to an Arduino Nano 33 BLE sense microcontroller unit (MCU) for inference. The findings indicated that the vacuum and MAP1 efficiently increased the shelf life and maintained the quality parameters of the packaged fresh fruit to 43 ± 2.39 and 39 ± 3.34 days, respectively, at 5 °C. The optimal neural network consisted of the input layer with 20 nodes (the packaging type, storage temperature, and 18 channels of the spectral sensor data at 410 to 940 nm wavelengths), two hidden layers with 20 and 12 nodes, and an output layer with one node for the target quality parameter or shelf life. These optimal prediction models efficiently predicted the shelf life with R2 = 0.951, pH with R2 = 0.854, TSSs with R2 = 0.893, SC with R2 = 0.881, MC with R2 = 0.941, and TC with R2 = 0.909. The evaluation of the developed prediction models under each packaging condition indicated that these models serve as powerful tools for accurately predicting fruit quality parameters, and estimating the shelf life of fresh dates.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3