Improving Runoff Prediction Accuracy in a Mountainous Watershed Using a Remote Sensing-Based Approach

Author:

Fathololoumi Solmaz12,Vaezi Ali Reza1,Alavipanah Seyed Kazem3,Ghorbani Ardavan4ORCID,Karimi Firozjaei Mohammad3ORCID,Biswas Asim2ORCID

Affiliation:

1. Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran

2. School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada

3. Department of Remote Sensing & GIS, Faculty of Geography, University of Tehran, Tehran 14155-6465, Iran

4. Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran

Abstract

Due to the limited number and sparse distribution of meteorological and hydrometric stations in most watersheds, the runoff estimation based on these stations may not be accurate. However, the accurate determination of the Antecedent Soil Moisture (ASM) in watersheds can improve the accuracy of runoff forecasting. The objective of this study is to utilize the ASM derived from satellite imagery to enhance the accuracy of runoff estimation in a mountainous watershed. In this study, a range of Remote Sensing (RS) data, including surface biophysical and topographic features, climate data, hydrometric station flow data, and a ground-based measured SM database for the Balikhli-Chay watershed in Iran, were utilized. The Soil Conservation Service Curve Number (SCS-CN) method was employed to estimate runoff. Two approaches were used for estimating the ASM: (1) using the precipitation data recorded in ground stations, and (2) using the SM data obtained from satellite images. The accuracy of runoff estimation was then calculated for these two scenarios and compared. The mean Nash–Sutcliffe statistic was found to be 0.63 in the first scenario and 0.74 in the second scenario. The inclusion of ASM derived from the satellite imagery in the precipitation–runoff model resulted in a 51% increase in the accuracy of runoff estimation compared to using precipitation data recorded in ground stations. These findings have significant implications for improving the accuracy of ASM and runoff modeling in various applications.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3