Estimation of the Leaf Area Index of Winter Rapeseed Based on Hyperspectral and Machine Learning

Author:

Zhang Wei123,Li Zhijun123,Pu Yang123,Zhang Yunteng123,Tang Zijun123ORCID,Fu Junyu123,Xu Wenjie123,Xiang Youzhen123ORCID,Zhang Fucang123

Affiliation:

1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Yangling 712100, China

2. Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China

3. College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling, 712100, China

Abstract

Leaf area index (LAI) is essential for evaluating crop growth and development. Destructive manual measurement methods mainly achieve traditional crop LAI acquisition. Due to the advantages of being fast and non-destructive, spectroscopy technology provides a feasible method for obtaining crop LAI. In order to achieve efficient acquisition of winter oilseed rape LAI, this study collected hyperspectral data and LAI data at the full-bloom stage of winter oilseed rape. It calculated the spectral indexes related to the LAI of the original spectrum and the first-order differential spectrum, respectively. The index with the highest correlation with the LAI of winter oilseed rape at the flowering stage was selected as the optimal spectral index for input. Subsequently, three machine learning methods, Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), and Random Forest (RF), were used to construct the LAI model of winter oilseed rape, and the model was tested. The results show that the correlation coefficient between the spectral index calculated by the first-order differential processing of the original spectral data and the LAI of winter rapeseed is significantly improved compared with the original data. Among them, the spectral index NDVI with the best correlation coefficient with LAI can be obtained under the first-order differential: the correlation coefficient is 0.734, and the wavelength combination is 716 nm and 724 nm. At the same time, we found that when the input variables are the same, the RF model has higher estimation accuracy than the other models. The best estimation accuracy is obtained when the input variable is the first-order differential spectral index. The R2 of the model validation set is 0.810, RMSE is 0.455 cm2/cm2, MRE is 10.465%, and the model accuracy is high. The results of this study can provide a theoretical basis for crop monitoring based on spectral technology and provide a theoretical basis for crop growth.

Funder

National Natural Science Foundation of China

National Innovative Experimental Project for College Students

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3