Diurnal Temperature Range and Its Response to Heat Waves in 16 European Cities—Current and Future Trends

Author:

Katavoutas George1ORCID,Founda Dimitra1,Varotsos Konstantinos V.1ORCID,Giannakopoulos Christos1ORCID

Affiliation:

1. Institute for Environmental Research and Sustainable Development, National Observatory of Athens, GR-15236 Athens, Greece

Abstract

An important indicator of climate change is the diurnal temperature range (DTR), defined as the difference between the daily maximum and daily minimum air temperature. This study aims to investigate the DTR distribution in European cities of different background climates in relation to the season of the year, climate class and latitude, as well as its response to exceptionally hot weather. The analysis is based on long-term observational records (1961–2019) coupled with Regional Climate Model (RCM) data in order to detect any projected DTR trends by the end of the 21st century under intermediate and high emission greenhouse gases (GHGs) scenarios. The analysis reveals marked variations in the magnitude of DTR values between the cities, on the one hand, and distinct patterns of the DTR distribution according to the climate class of each city, on the other. The results also indicate strong seasonal variability in most of the cities, except for the Mediterranean coastal ones. DTR is found to increase during hot days and heat wave (HW) days compared to summer normal days. High latitude cities experience higher increases (3.7 °C to 5.7 °C for hot days, 3.1 °C to 5.7 °C for HW days) compared to low latitude cities (1.3 °C to 3.6 °C for hot days, 0.5 °C to 3.4 °C for HW days). The DTR is projected to significantly decrease in northernmost cities (Helsinki, Stockholm, Oslo), while it is expected to significantly increase in Madrid by the end of the 21st century under both the intermediate- and high-emission scenarios, due to the asymmetric temperature change. The asymmetrical response of global warming is more pronounced under the high-emission scenario where more cities at higher latitudes (Warsaw, Berlin, Rotterdam) are added to those with a statistically significant decrease in DTR, while others (Bucharest, Nicosia, Zurich) are added to those with an increase in DTR.

Funder

European Union’s Horizon 2020 research and innovation programme

ARSINOE

National Development Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference62 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis, Cambridge University Press. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

2. Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data;Zhang;Wiley Interdiscip. Rev. Clim. Chang.,2011

3. Diurnal Temperature Range as an Index of Global Climate Change during the Twentieth Century;Braganza;Geophys. Res. Lett.,2004

4. Projections of Excess Mortality Related to Diurnal Temperature Range under Climate Change Scenarios: A Multi-Country Modelling Study;Lee;Lancet Planet. Health,2020

5. Association of Diurnal Temperature Range with Daily Hospitalization for Exacerbation of Chronic Respiratory Diseases in 21 Cities, China;Wang;Respir. Res.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3