The ER Stress Inducer l-Azetidine-2-Carboxylic Acid Elevates the Levels of Phospho-eIF2α and of LC3-II in a Ca2+-Dependent Manner

Author:

Roest Gemma,Hesemans Evelien,Welkenhuyzen Kirsten,Luyten Tomas,Engedal Nikolai,Bultynck Geert,Parys Jan

Abstract

Accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to reduce protein load and restore homeostasis, including via induction of autophagy. We used the proline analogue l-azetidine-2-carboxylic acid (AZC) to induce ER stress, and assessed its effect on autophagy and Ca2+ homeostasis. Treatment with 5 mM AZC did not induce poly adenosine diphosphate ribose polymerase (PARP) cleavage while levels of binding immunoglobulin protein (BiP) and phosphorylated eukaryotic translation initiation factor 2α (eIF2α) increased and those of activating transcription factor 6 (ATF6) decreased, indicating activation of the protein kinase RNA-like ER kinase (PERK) and the ATF6 arms of the UPR but not of apoptosis. AZC treatment in combination with bafilomycin A1 (Baf A1) led to elevated levels of the lipidated form of the autophagy marker microtubule-associated protein light chain 3 (LC3), pointing to activation of autophagy. Using the specific PERK inhibitor AMG PERK 44, we could deduce that activation of the PERK branch is required for the AZC-induced lipidation of LC3. Moreover, both the levels of phospho-eIF2α and of lipidated LC3 were strongly reduced when cells were co-treated with the intracellular Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N′,N′-tetraaceticacid tetra(acetoxy-methyl) ester (BAPTA-AM) but not when co-treated with the Na+/K+ ATPase inhibitor ouabain, suggesting an essential role of Ca2+ in AZC-induced activation of the PERK arm of the UPR and LC3 lipidation. Finally, AZC did not trigger Ca2+ release from the ER though appeared to decrease the cytosolic Ca2+ rise induced by thapsigargin while also decreasing the time constant for Ca2+ clearance. The ER Ca2+ store content and mitochondrial Ca2+ uptake however remained unaffected.

Funder

Fonds Wetenschappelijk Onderzoek

Norges Forskningsråd

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3