Author:
Kosan Christian,Heidel Florian,Godmann Maren,Bierhoff Holger
Abstract
In complex organisms, stem cells are key for tissue maintenance and regeneration. Adult stem cells replenish continuously dividing tissues of the epithelial and connective types, whereas in non-growing muscle and nervous tissues, they are mainly activated upon injury or stress. In addition to replacing deteriorated cells, adult stem cells have to prevent their exhaustion by self-renewal. There is mounting evidence that both differentiation and self-renewal are impaired upon aging, leading to tissue degeneration and functional decline. Understanding the molecular pathways that become deregulate in old stem cells is crucial to counteract aging-associated tissue impairment. In this review, we focus on the epigenetic mechanisms governing the transition between quiescent and active states, as well as the decision between self-renewal and differentiation in three different stem cell types, i.e., spermatogonial stem cells, hematopoietic stem cells, and muscle stem cells. We discuss the epigenetic events that channel stem cell fate decisions, how this epigenetic regulation is altered with age, and how this can lead to tissue dysfunction and disease. Finally, we provide short prospects of strategies to preserve stem cell function and thus promote healthy aging.
Funder
Deutsche Forschungsgemeinschaft
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献