Analysis of Drought Characteristics Projections for the Tibetan Plateau Based on the GFDL-ESM2M Climate Model

Author:

Liu Yu,Jia ZhifengORCID,Ma Xiaoyi,Wang Yongqiang,Guan RonghaoORCID,Guan Zilong,Gu Yuhui,Zhao Wei

Abstract

Under conditions of continuous global warming, research into the future change trends of regional dry-wet climates is key for coping with and adapting to climate change, and is also an important topic in the field of climate change prediction. In this study, daily precipitation and mean temperature datasets under four representative concentrative pathway (RCP) scenarios in the geophysical fluid dynamics laboratory Earth system model with modular ocean model (GFDL-ESM2M) version 4 were used to calculate the standardized precipitation-evapotranspiration index of the Tibetan Plateau (TP) at different time scales. Using a multi-analytical approach including the Mann–Kendall trend test and run theory, the spatiotemporal variation characteristics of drought in the TP from 2016 to 2099 were studied. The results show that the overall future climate of the TP will develop towards warm and humid, and that the monthly-scale wet–dry changes will develop non-uniformly. As the concentration of carbon dioxide emissions increases in the future, the proportion of extremely significant aridification and humidification areas in the TP will significantly increase, and the possibility of extreme disasters will also increase. Moreover, influenced by the increase of annual TP precipitation, the annual scale of future drought in the region will tend to decrease slightly, and the spatial distributions of the frequency and intensity of droughts at all levels will develop uniformly. Under all four RCP scenarios, the drought duration of the TP was mainly less than 3 months, and the drought cycle in the southern region was longer than that in the northern region. The results of this study provide a new basis for the development of adaptive measures for the TP to cope with climate change.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3