AgSAT: A Smart Irrigation Application for Field-Scale Daily Crop ET and Water Requirements Using Satellite Imagery

Author:

Jaafar HadiORCID,Mourad Roya,Hazimeh Rim,Sujud LaraORCID

Abstract

With the foreseen increase in population and the reliance on water as a key input for agricultural production, greater demand will be placed on freshwater supplies. The objective of this work was to present the newly developed Android smartphone application to calculate crop evapotranspiration in real-time to support field-scale irrigation management. As part of the answer to water shortage, we embraced technology by developing AgSAT, a Google Earth Engine-based application that optimizes water use for food production. AgSAT uses meteorological data to calculate daily water requirements using the ASCE-Penman–Monteith method (ETref) and vegetation indices from satellite imagery to derive the basal crop growth coefficient, Kcb. The performance of AgSAT to estimate ETref was assessed using climatic data from 18 meteorological stations distributed over several climatic zones worldwide. ETref estimation through the app showed acceptable results with values of 1.27, 0.9, 0.79, 0.95, and 0.5 for root mean square error (RMSE), correlation coefficient (r), modeling efficiency (NSE), concordance index (d), and percentage bias (Pbias), respectively. AgSAT guides gross irrigation requirements for crops and rationalizes water quantities used in agricultural production. AgSAT has been released, is currently in use by research scientists, agricultural producers, and irrigation managers, and is freely accessible from the Google Play and IOS Store and also at agsat.app. Our work is geared towards the development of remote sensing-based technologies that transfer significant benefits to farmers and water-saving efforts.

Funder

Google

IHE-Delft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3