Assessing Nitrogen Variability at Early Stages of Maize Using Mobile Fluorescence Sensing

Author:

Siqueira Rafael,Mandal DipankarORCID,Longchamps LouisORCID,Khosla Raj

Abstract

Characterizing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Practitioners of precision N management require determination of in-season plant N status in real-time in the field to enable the most efficient N fertilizer management system. The objective of this study was to assess if mobile in-field fluorescence sensor measurements can accurately quantify the variability of nitrogen indicators in maize canopy early in the crop growing season. A Multiplex®3 fluorescence sensor was used to collect crop canopy data at the V6 and V9 maize growth stages. Multiplex fluorescence indices were successful in discriminating variability among N treatments with moderate accuracies at V6, and higher at the V9 stage. Fluorescence-based indices were further utilized with a machine learning (ML) model to estimate canopy nitrogen indicators i.e., N concentration and above-ground biomass at the V6 and V9 growth stages independently. Parameter estimation using the Support Vector Regression (SVR)-based ML mode indicated a promising accuracy in estimation of N concentration and above-ground biomass at the V6 stage of maize with the moderate range of correlation coefficient (r = 0.72 ± 0.03) and Root Mean Square Error (RMSE). The retrieval accuracies (r = 0.90 ± 0.06) at the V9 stage were better than those of the V6 growth stage with a reasonable range of error estimates and yielding the lowest RMSE (0.23 (%N) and 12.37 g (biomass)) for all canopy N indicators. Mobile fluorescence sensing can be used with reasonable accuracies for determining canopy N variability at early growth stages of maize, which would help farmers in optimal management of nitrogen.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference84 articles.

1. Precision nitrogen management and global nitrogen use efficiency;Gupta;Proceedings of the 11th International Conference on Precision Agriculture,2012

2. Zoning in on nitrogen needs;Khosla;Colo. State Univ. Agron. Newsl.,2001

3. Spatial management strategies for nitrogen in maize production based on soil and crop data

4. Implementing Precision Agriculture in the 21st Century

5. Economic Feasibility of Variable‐Rate Nitrogen Application Utilizing Site‐Specific Management Zones

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3