Automatic Laboratory Martian Rock and Mineral Classification Using Highly-Discriminative Representation Derived from Spectral Signatures

Author:

Yang JuntaoORCID,Kang ZhizhongORCID,Yang Ze,Xie Juan,Xue Bin,Yang Jianfeng,Tao Jinyou

Abstract

The optical properties of rocks and minerals provide a reliable way to measure their chemical and mineralogical composition due to the specific reflection behaviors, which is also the key insight behind most automatic identification and classification approaches. However, the inter-category spectral similarity poses a great challenge to the automatic identification and classification tasks because of the diversity of rocks and minerals. Therefore, this paper develops a recognition and classification approach of rocks and minerals using the highly discriminative representation derived from their raw spectral signatures. More specifically, a transformer-based classification approach integrated with category-aware contrastive learning is constructed and trained in an end-to-end manner, which would force instances of the same category to remain close-by while pushing instances of a dissimilar category far apart in the high-dimensional feature space, in order to produce the highly discriminative feature representation of the rocks and minerals. From both qualitative and quantitative views, experiments are conducted on the laboratory sample dataset with 30 types of rocks and minerals shared from the National Mineral Rock and Fossil Specimens Resource Center, and the spectral information of the laboratory rocks and minerals is captured using a multi-spectral sensor, with a duplicated payload of the counterpart onboard the Zhurong rover. Quantitative results demonstrate that the developed approach can effectively distinguish 30 types of rocks and minerals, with a high overall accuracy of 96.92%. Furthermore, the developed approach is remarkably superior to other existing methods, with average differences of 4.75% in the overall accuracy. Furthermore, we also visualized the derived highly discriminative features of different types of rocks and minerals by projecting them onto a two-dimensional map, where the same categories tend to be modeled by nearby locations and the dissimilar categories by distant locations with high probability. It can be observed that, compared with those in the raw spectral feature space, the clusters are formed better in the derived highly discriminative feature space, which further confirms the promising representation capability.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

Civil Aerospace Technology Advance Research Project of National Defense Science and Engineering

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3