Estimating the Peak Outflow and Maximum Erosion Rate during the Breach of Embankment Dam

Author:

Ghonim Mahmoud T.1,Jatwary Ashraf1ORCID,Mowafy Magdy H.1,Zelenakova Martina2ORCID,Abd-Elhamid Hany F.12ORCID,Omara H.3,Eldeeb Hazem M.1ORCID

Affiliation:

1. Department of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

2. Department of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, 040 01 Kosice, Slovakia

3. Irrigation and Hydraulics Department, Faculty of Engineering, Tanta University, Tanta 31527, Egypt

Abstract

Understanding and modeling a dam breaching process is an essential investigation, because it aims to minimize the flood’s hazards, and its impact on people and structures, using suitable mitigation plans. In the current study, three-dimensional numerical modeling is carried out using the FLOW-3D HYDRO program to investigate the impact of various factors, including the dam grain size materials, crest width, inflow discharge, and tail water depth on the dam breach process, particularly the peak outflow, and the erosion rate. The results show that changing the grain size of the dam material from fine sand to medium and coarse sand leads to an increase in the peak outflow discharge by 16.0% and the maximum erosion rate by 20.0%. Furthermore, increasing the dam crest width by 40% leads to a decrease in the peak outflow by 3.0% and the maximum erosion rates by 4.50%. Moreover, increasing the inflow discharge by 25.0% increases the peak outflow by 23.0% and the maximum erosion rates by 21.0%. Finally, increasing the tail water depth by 50.0% leads to decreasing the peak outflow by 4.50% and the maximum erosion rate by 43.0%. The study findings are considered of high importance for dam design and operation control. Moreover, the results can be applied for the optimum determination of the crest width and tail water depth that leads to improving the dam stability.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3