Brain Response and Reaction Time in Natural and Comfort Conditions, with Energy-Saving Potential in an Office Environment

Author:

Budiawan WiwikORCID,Sakakibara Hirotake,Tsuzuki KazuyoORCID

Abstract

Psychological adaptation to ambient temperatures is fascinating and critical, both theoretically and practically, for energy efficiency in temperate climates. In this study, we investigated and compared the brain response (event-related potentials with a late positive component and latency ~300 milliseconds; labeled “P300” in the present study) and reaction times of Indonesian participants (n = 11), as tropical natives living in Japan, and Japanese participants (n = 9) in natural (i.e., hot during the summer and cold during the winter) and comfort conditions (with cooling and heating). Thermal comfort under contrasting conditions was studied using both instruments and subjective ratings. P300 potential and reaction time were measured before and after a Uchida–Kraepelin (U–K) test (30 summation lines). The results showed that P300 potential and latency did not change between the pre- and post-U–K test among conditions in any of the groups. Furthermore, Indonesian participants showed lower P300 potential (hot conditions) and slower P300 latency (hot and cooling conditions) than Japanese participants. We also found that the reaction time of the Indonesian group significantly differed between the pre- and post-U–K test in an air-conditioned environment, with either cooling or heating. In this study, Indonesian participants demonstrated a resistance to P300 and worse reaction times during work in a thermally unfamiliar season, specifically indicated by the indifferent performances among contrasting environmental conditions. Indonesian participants also showed similar thermal and comfort sensations to Japanese participants among the conditions. In the winter, when the Indonesian neutral temperature is higher than Japanese’s, the energy consumption may increase.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3