Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels

Author:

Cararo José A. G.ORCID,Caetano Neto João,Vilela Júnior Wagner A.,Reis Márcio R. C.,Wainer Gabriel A.,dos Santos Paulo V.,Calixto Wesley P.

Abstract

The main objective of this work is to develop a methodology for analyzing the quality of the voltage level in the distribution power grid to identify and reduce the violations of voltage limits through the proposition of optimal points for the allocation of photovoltaic distributed generation. The methodology uses the geographic location of the power grid and its consumers to perform the grouping and classification in spatial grids of 100 × 100 m using the average annual consumption profile. The generated profiles, including the grid information, are sent to the photovoltaic distributed generation allocation algorithm, which, using an optimization process, identifies the geographic location, the required installed capacity, and the minimum number of photovoltaic generation units that must be inserted to minimize the violations of voltage limits, respecting the necessary restrictions. The entire proposal is applied in a real feeder with thousands of bars, whose model is validated with measurements carried out in the field. Different violations of voltage limits scenarios are used to validate the methodology, obtaining grids with better voltage quality after the optimized allocation of photovoltaic distributed generation. The proposal presents itself as a new tool in the work of adapting the voltage of the distribution power grid using photovoltaic distributed generation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3