Abstract
Though the development of China’s civil aviation and the improvement of control ability have strengthened the safety operation and support ability effectively, the airlines are under the pressure of operation costs due to the increase of aircraft fuel price. With the development of optimization controlling methods in flight management systems, it becomes increasingly challenging to cut down flight fuel consumption by control the flight status of the aircraft. Therefore, the airlines both at home and abroad mainly rely on the accurate estimation of aircraft fuel to reduce fuel consumption, and further reduce its carbon emission. The airlines have to take various potential factors into consideration and load more fuel to cope with possible negative situation during the flight. Therefore, the fuel for emergency use is called PBCF (Performance-Based Contingency Fuel). The existing PBCF forecasting method used by China Airlines is not accurate, which fails to take into account various influencing factors. This paper aims to find a method that could predict PBCF more accurately than the existing methods for China Airlines.This paper takes China Eastern Airlines as an example. The experimental data of flight fuel of China Eastern Airlines Co, Ltd. were collected to find out the relevant parameters affecting the fuel consumption, which is followed by the establishment of the LSTM neural network through the parameters and collected data. Finally, through the established neural network model, the PBCF addition required by the airline with different influencing factors is output. It can be seen from the results that the all the four models are available for the accurate prediction of fuel consumption. The amount of data of A319 is much larger than that of A320 and A330, which leads to higher accuracy of the model trained by A319. The study contributes to the calculation methods in the fuel-saving project, and helps the practitioners to learn about a particular fuel calculation method. The study brought insights for practitioners to achieve the goal of low carbon emission and further contributed to their progress towards circular economy.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献