A Study on Sustainable Consumption of Fuel—An Estimation Method of Aircraft

Author:

Li Lisha,Yuan Shuming,Teng YueORCID,Shao JingORCID

Abstract

Though the development of China’s civil aviation and the improvement of control ability have strengthened the safety operation and support ability effectively, the airlines are under the pressure of operation costs due to the increase of aircraft fuel price. With the development of optimization controlling methods in flight management systems, it becomes increasingly challenging to cut down flight fuel consumption by control the flight status of the aircraft. Therefore, the airlines both at home and abroad mainly rely on the accurate estimation of aircraft fuel to reduce fuel consumption, and further reduce its carbon emission. The airlines have to take various potential factors into consideration and load more fuel to cope with possible negative situation during the flight. Therefore, the fuel for emergency use is called PBCF (Performance-Based Contingency Fuel). The existing PBCF forecasting method used by China Airlines is not accurate, which fails to take into account various influencing factors. This paper aims to find a method that could predict PBCF more accurately than the existing methods for China Airlines.This paper takes China Eastern Airlines as an example. The experimental data of flight fuel of China Eastern Airlines Co, Ltd. were collected to find out the relevant parameters affecting the fuel consumption, which is followed by the establishment of the LSTM neural network through the parameters and collected data. Finally, through the established neural network model, the PBCF addition required by the airline with different influencing factors is output. It can be seen from the results that the all the four models are available for the accurate prediction of fuel consumption. The amount of data of A319 is much larger than that of A320 and A330, which leads to higher accuracy of the model trained by A319. The study contributes to the calculation methods in the fuel-saving project, and helps the practitioners to learn about a particular fuel calculation method. The study brought insights for practitioners to achieve the goal of low carbon emission and further contributed to their progress towards circular economy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Navigating Efficiency: Insights from One-Stage and Two-Stage DEA Modeling in the Airline Industry;Annals of Operations Research;2024-07-22

2. Application of neural networks in the prediction of the circular economy level in agri-food chains;International Journal of Industrial Engineering and Management;2024-03-30

3. Estimation Of Fuel Consumption In Aviation Through Time Series;2024 IEEE Aerospace Conference;2024-03-02

4. A new proposal for the prediction of an aircraft engine fuel consumption: a novel CNN-BiLSTM deep neural network model;Aircraft Engineering and Aerospace Technology;2023-03-07

5. Detailed Analysis of Aircraft Fuel Flow Using Data from Flight Data Recorder;Transportation Research Record: Journal of the Transportation Research Board;2023-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3