Abstract
Non-alcoholic fatty pancreas disease (NAFPD) is a common and at the same time not extensively examined pathological condition that is significantly associated with obesity, metabolic syndrome, and insulin resistance. These factors can lead to the development of critical pathogens such as type-2 diabetes mellitus (T2DM), atherosclerosis, acute pancreatitis, and pancreatic cancer. Until recently, the diagnosis of NAFPD was based on noninvasive medical imaging methods and visual evaluations of microscopic histological samples. The present study focuses on the quantification of steatosis prevalence in pancreatic biopsy specimens with varying degrees of NAFPD. All quantification results are extracted using a methodology consisting of digital image processing and transfer learning in pretrained convolutional neural networks for the detection of histological fat structures. The proposed method is applied to 20 digitized histological samples, producing an 0.08% mean fat quantification error thanks to an ensemble CNN voting system and 83.3% mean Dice fat segmentation similarity compared to the semi-quantitative estimates of specialist physicians.
Funder
Operational Program Competitiveness, Entrepreneurship and Innovation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献