Fast Tracking Algorithm Based on Spatial Regularization Correlation Filter

Author:

Liu CaihongORCID,Ibrayim Mayire,Hamdulla AskarORCID

Abstract

To solve the problem of the redundant number of training samples in a correlation filter-based tracking algorithm, the training samples were implicitly extended by circular shifts of the given target patches, and all the extended samples were used as negative samples for the fast online learning of the filter. Since all these shifted patches were not true negative samples of the target, the tracking process suffered from boundary effects, especially in challenging situations such as occlusion and background clutter, which can significantly impair the tracking performance of the tracker. Spatial regularization in the SRDCF tracking algorithm is an effective way to mitigate boundary effects, but it comes at the cost of highly increased time complexity, resulting in a very slow tracking speed of the SRDCF algorithm that cannot achieve a real-time tracking effect. To address this issue, we proposed a fast-tracking algorithm based on spatially regularized correlation filters that efficiently optimized the solved filters by replacing the Gauss–Seidel method in the SRDCF algorithm with the alternating direction multiplier method. The problem of slow speed in the SRDCF tracking algorithm improved, and the improved FSRCF algorithm achieved real-time tracking. An adaptive update mechanism was proposed by using the feedback from the high confidence tracking results to avoid model corruption. That is, a robust confidence evaluation criterion was introduced in the model update phase, which combined the maximum response criterion and the average peak correlation energy APCE criterion to determine whether to update the filter, thereby avoiding filter model drift and improving the target tracking accuracy and speed. We conducted extensive experiments on datasets OTB-2015, OTB-2013, UAV123, and TC128, and the experimental results show that the proposed algorithm exhibits a more stable and accurate tracking performance in the presence of occlusion and background clutter during tracking.

Funder

Mayire Ibrayim

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3