Diversity of SIRV-like Viruses from a North American Population

Author:

Fackler Joseph R.,Dworjan Michael,Gazi Khaled S.ORCID,Grogan Dennis W.

Abstract

A small subset of acidic hot springs sampled in Yellowstone National Park yielded rod-shaped viruses which lysed liquid host cultures and formed clear plaques on lawns of host cells. Three isolates chosen for detailed analysis were found to be genetically related to previously described isolates of the Sulfolobus islandicus rod-shaped virus (SIRV), but distinct from them and from each other. Functional stability of the new isolates was assessed in a series of inactivation experiments. UV-C radiation inactivated one of the isolates somewhat faster than bacteriophage λ, suggesting that encapsidation in the SIRV-like virion did not confer unusual protection of the DNA from UV damage. With respect to high temperature, the new isolates were extremely, but not equally, stable. Several chemical treatments were found to inactivate the virions and, in some cases, to reveal apparent differences in virion stability among the isolates. Screening a larger set of isolates identified greater variation of these stability properties but found few correlations among the resulting profiles. The majority of host cells infected by the new isolates were killed, but survivors exhibited heritable resistance, which could not be attributed to CRISPR spacer acquisition or the loss of the pilus-related genes identified by earlier studies. Virus-resistant host variants arose at high frequency and most were resistant to multiple viral strains; conversely, resistant host clones generated virus-sensitive variants, also at high frequency. Virus-resistant cells lacked the ability of virus-sensitive cells to bind virions in liquid suspensions. Rapid interconversion of sensitive and resistant forms of a host strain suggests the operation of a yet-unidentified mechanism that acts to allow both the lytic virus and its host to propagate in highly localized natural populations, whereas variation of virion-stability phenotypes among the new viral isolates suggests that multiple molecular features contribute to the biological durability of these viruses.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3