Algorithmic Design of Geometric Data for Molecular Potential Energy Surfaces

Author:

Cruz Ahyssa R.,Ermler Walter C.

Abstract

A code MolecGeom, based on algorithms for stepwise distortions of bond lengths, bond angles and dihedral angles of polyatomic molecules, is presented. Potential energy surfaces (PESs) are curated in terms of the energy for each molecular geometry. PESs based on the Born–Oppenheimer approximation, by which the atomic nuclei within a molecule are assumed stationary with respect to the motion of its electrons, are calculated. Applications requiring PESs involve the effects of nuclear motion on molecular properties. These include determining equilibrium geometries corresponding to stationary and saddle point energies, calculating reaction rates and predicting vibrational spectra. This multi-objective study focuses on the development of a new method for the calculation of PESs and the analysis of the molecular geometry components in terms of incremental changes that provide comprehensive sampling while preserving the precision of PES points. MolecGeom is applied to generate geometric data to calculate PESs for theoretical calculations of vibrational-rotational spectra of water and formaldehyde. An ab initio PES comprising 525 and 2160 intramolecular nuclear configurations results in vibrational frequencies in agreement with experiment, having errors less than 0.08% and 0.8%, respectively. Vinyl alcohol, with a total of 14 internal coordinates, generates a PES of 1458 unique geometries. Ascorbic acid, with 54 internal coordinates, generates a 1,899,776 point PES.

Funder

RISE PhD program at UTSA

National Science Foundation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference22 articles.

1. Molecular potential-energy surfaces for chemical reaction dynamics;Collins;Theor. Chem. Acc.,2002

2. Analytical Representaiton and vibrational-rotational analysis of AB Initio potential energy and property surfaces;Ermler;Adv. Mol. Electron. Struct. Theory,1990

3. Wolfram Research, Inc. (2022). Mathematica, Wolfram Research, Inc.

4. Krohn, B.J. (1971). Calculation of Vibration-Rotation Energies of Diatomic Molecules to Sixth Order of Approximation and Bent Symmetrical XY2 Triatomic Molecules to Fourth Order by an Improved Systematic Perturbation Theory Procedure. [Ph.D. Thesis, Ohio State University].

5. Nuclear corrections to molecular properties. VI. Vibrational transition moments in asymmetric-top molecules;Krohn;J. Chem. Phys.,1978

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3