Abstract
Classical evolutionary game theory allows one to analyze the population dynamics of interacting individuals playing different strategies (broadly defined) in a population. To expand the scope of this framework to allow us to examine the evolution of these individuals’ strategies over time, we present the idea of a fitness-generating (G) function. Under this model, we can simultaneously consider population (ecological) and strategy (evolutionary) dynamics. In this paper, we briefly outline the differences between game theory and classical evolutionary game theory. We then introduce the G function framework, deriving the model from fundamental biological principles. We introduce the concept of a G-function species, explain the process of modeling with G functions, and define the conditions for evolutionary stable strategies (ESS). We conclude by presenting expository examples of G function model construction and simulations in the context of predator–prey dynamics and the evolution of drug resistance in cancer.
Funder
National Science Foundation
National Cancer Institute
Subject
Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献