U-Vectors: Generating Clusterable Speaker Embedding from Unlabeled Data

Author:

Mridha Muhammad FirozORCID,Ohi Abu QuwsarORCID,Monowar Muhammad MostafaORCID,Hamid Md. AbdulORCID,Islam Md. RashedulORCID,Watanobe YutakaORCID

Abstract

Speaker recognition deals with recognizing speakers by their speech. Most speaker recognition systems are built upon two stages, the first stage extracts low dimensional correlation embeddings from speech, and the second performs the classification task. The robustness of a speaker recognition system mainly depends on the extraction process of speech embeddings, which are primarily pre-trained on a large-scale dataset. As the embedding systems are pre-trained, the performance of speaker recognition models greatly depends on domain adaptation policy, which may reduce if trained using inadequate data. This paper introduces a speaker recognition strategy dealing with unlabeled data, which generates clusterable embedding vectors from small fixed-size speech frames. The unsupervised training strategy involves an assumption that a small speech segment should include a single speaker. Depending on such a belief, a pairwise constraint is constructed with noise augmentation policies, used to train AutoEmbedder architecture that generates speaker embeddings. Without relying on domain adaption policy, the process unsupervisely produces clusterable speaker embeddings, termed unsupervised vectors (u-vectors). The evaluation is concluded in two popular speaker recognition datasets for English language, TIMIT, and LibriSpeech. Also, a Bengali dataset is included to illustrate the diversity of the domain shifts for speaker recognition systems. Finally, we conclude that the proposed approach achieves satisfactory performance using pairwise architectures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3