Broadband Spectral Analysis Algorithm with High-Frequency Resolution for Elimination of Overlap Interference between Adjacent Channels

Author:

Wang Xianhai,Wang Teng,Yin Chuan,Han Jun,Meng Qiao,Wang Chen

Abstract

Spectral lines can be analysed to determine the physical properties of molecular clouds and the astrochemical processes in the formation area of massive stars. To improve the observation technology of radio astronomy, this paper proposes and compares two spectral analysis algorithms (improved weighted overlap-add (IWOLA) + FFT and IWOLA + weighted overlap-add (WOLA)). The proposed algorithms can obtain an ultra-high-frequency resolution for real-valued wideband signals, eliminate the signal overlapping interference between adjacent channels, substantially decrease the required hardware resources, especially multipliers, adders, and memory resources, and reduce the system design complexity. The IWOLA + FFT algorithm consists of an improved weighted overlap-add (IWOLA) filter bank, fast Fourier transform (FFT), a specific decimation for the output data from the IWOLA filter bank, and a selection for part of the output data from the FFT. The IWOLA + WOLA algorithm consists of the same modules as the IWOLA + FFT algorithm, with the second-stage FFT replaced by the modules of the weighted overlap-add (WOLA) filter bank and the accumulation for each sub-band. Based on an analysis of the underlying principles and characteristics of both algorithms, the IWOLA + FFT algorithm demonstrated a spectrum with a high frequency resolution and a comparable performance to an ultra-large-scale FFT, based on two smaller FFTs and a flexible architecture instead of a ultra-large-scale FFT. The IWOLA + WOLA algorithm contains the same function as the IWOLA + FFT algorithm and demonstrates a higher performance. The proposed algorithms eliminated the interference between the adjacent channels within the entire Nyquist frequency bandwidth. The simulation results verify the accuracy and spectral analysis performances of the proposed algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel digital intermediate frequency module for hyperspectral microwave radiometers based on the parallel fast Fourier transform algorithm;Review of Scientific Instruments;2024-03-01

2. A Low Complexity Panoramic Spectrum Monitoring Algorithm;2022 3rd International Conference on Electronics, Communications and Information Technology (CECIT);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3