Quaternization of Poly(2-diethyl aminoethyl methacrylate) Brush-Grafted Magnetic Mesoporous Nanoparticles Using 2-Iodoethanol for Removing Anionic Dyes

Author:

Alotaibi Khalid MohammedORCID,Almethen Abdurrahman A.,Beagan Abeer M.ORCID,Al-Swaidan Hassan M.,Ahmad AshfaqORCID,Bhawani Showkat Ahmad,Alswieleh Abdullah M.ORCID

Abstract

Magnetic mesoporous silica nanoparticles (Fe3O4-MSNs) were successfully synthesized with a relatively high surface area of 568 m2g−1. Fe3O4-MSNs were then modified with poly(2-diethyl aminoethyl methacrylate) (PDEAEMA) brushes using surface-initiated ARGET atom transfer radical polymerization (ATRP) (Fe3O4@MSN-PDMAEMA). Since the charge of PDEAEMA is externally regulated by solution pH, tertiary amines in the polymer chains were quaternized using 2-iodoethanol to obtain cationic polymer chains with a permanent positive charge (Fe3O4@MSN-QPDMAEMA). The intensity of the C−O peak in the C1s X-ray photoelectron spectrum increased after reaction with 2-iodoethanol, suggesting that the quaternization process was successful. The applicability of the synthesized materials on the removal of methyl orange (MO), and sunset yellow (E110) dyes from an aqueous solution was examined. The effects of pH, contact time, and initial dyes concentrations on the removal performance were investigated by batch experiments. The results showed that the Fe3O4@MSN-PDMAEMA sample exhibited a weak adsorption performance toward both MO and E110, compared with Fe3O4@MSN-QPDMAEMA at a pH level above 5. The maximum adsorption capacities of MO and E110 using Fe3O4@MSN-QPDMAEMA were 294 mg g−1 and 194.8 mg g−1, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3