Recombination of Poly(Acrylic Acid) Radicals in Acidic Aqueous Solutions: A Pulse Radiolysis Study

Author:

Matusiak Małgorzata,Kadłubowski Sławomir,Ulański PiotrORCID

Abstract

Carbon-centered radicals have been randomly generated on the chains of poly(acrylic acid), PAA, the simplest synthetic anionic polyelectrolyte, by pulse-irradiating its dilute, oxygen-free aqueous solutions by 6 MeV electron beam. In some experiments, oligo(acrylic acid), OAA, and propionic acid, PA, were used as PAA models. Recombination kinetics of PAA radicals has been followed by fast spectrophotometry. A strong pH dependence of radical lifetime on pH, and thus on the linear charge density due to deprotonated carboxylate groups, has been confirmed, while a weaker amplitude of pH dependence was observed for OAA and PA. Decay kinetics of PAA radicals in the protonated state, at pH 2, have been studied in some detail. At moderate doses of ionizing radiation, resulting in a moderate average initial number of radicals per chain, ZR0, the decay can be satisfactorily described by a second-order kinetic model, but a somewhat better fit is obtained by using a dispersive kinetics approach. While for a constant polymer concentration the reciprocal half-lives are proportional to the initial radical concentrations, such a data series for different PAA concentrations do not overlap, indicating that the overall radical concentration is not the decisive factor controlling the kinetics. Arranging all data, in the form of second-order rate constants, as a function of the average initial number of radicals per chain allows one to obtain a common dependence. The latter seems to consist of two parts: a horizontal one at low ZR0 and another one of positive slope at higher ZR0. This is interpreted as two kinetic regimes where two distinct reactions dominate, intermolecular and intramolecular recombination, respectively. Comparison of the low ZR0 data with calculations based on the translational diffusion model indicate that the latter is not the rate-controlling process in intermolecular recombination of polymer radicals; segmental diffusion is the more likely candidate.

Funder

National Science Center

International Atomic Energy Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3