Predicting Ethanol Steam Reforming Products of Au-Cu Supported over Nano-Shaped CeO2 Using the Johnsen Measure in PLS

Author:

Zhi Chen,Tahir MuhammadORCID,Mehmood TahirORCID

Abstract

Hydrogen fuel cells have long been regarded as a more environmentally friendly alternative to traditional fossil fuels. Ethanol steam reforming (ESR) is a promising long-term, safe method of producing carbon-neutral hydrogen. ESR products are (CeCO2) support generate hydrogen (H2) with byproducts such as carbon dioxide (CO2) and carbon monoxide (CO). The researchers are interested in the quantification and estimation of syngas components. The current article introduces the Johnsen index-based measure in partial least squares (PLS) for predicting ESR products with cube, polyhydra, and rod morphologies, based on FTIR. The proposed method makes use of existing filter measures such as loading weights, variable importance on projection, and significant correlation. The proposed PLS measures based on the Johnsen index outperform the existing methods for predicting ESR products based on FTIR spectroscopic data. For (H2) conversion percent prediction with cube and polyhedra morphologies, the functional compounds (C-O), (C=O), (CH), and (C-H,=CH2) are common. Similarly, the functional compound (s-RCH=CHR) is frequently used for (H2) conversion percent prediction with polyhedra and rod morphologies. Moreover, on simulated data, the proposed Johnsen measure in PLS demonstrates higher sensitivity and accuracy. Furthermore, the proposed Johnsen measure in PLS identifies influential wavenumbers that map over the functional compounds.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Fuel cells and hydrogen fuel

2. Introduction to fuel cells and hydrogen technology

3. Potential Environmental Impact of a Hydrogen Economy on the Stratosphere

4. Bioethanol production from agricultural wastes: An overview

5. Modernization of catalyst systems for the processes of hydrocarbon conversion to synthesis gas;Kuzhaeva;ARPN J. Eng. Appl. Sci.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3