Study on Ducted Vertical Take-Off and Landing Fixed-Wing UAV Dynamics Modeling and Transition Corridor

Author:

Wang ChunyangORCID,Zhou Zhou,Wang Rui,Ding You

Abstract

An accurate description of the transition corridor is of great significance for the flight process of the vertical take-off and landing (VTOL) fixed-wing unmanned aerial vehicle (UAV). To study the transition flight process of vertical take-off and landing fixed-wing UAVs, the dynamic model and transition corridor model of this type of UAV are established in the current article. The method for establishing the model is based on a reasonable match of the power and aerodynamic force of this type of UAV. From the perspective of flight dynamics, the ducted lift-increasing system’s deflection angle–speed envelope is studied with the maximum lift coefficient of the wing and the system’s available power. The influence of the overall parameters and energy parameters of the UAV on the deflection angle–speed envelope of the ducted lift-increasing system is analyzed, and a method is proposed to expand the vertical take-off and landing fixed-wing UAV’s transition corridor. Taking the UAV as the object, using the established model, the transition flight corridor of the UAV is obtained, the influence of the control parameters on the transition flight is studied, and the appropriate transition flight control strategy is determined. At the same time, the influence of the overall parameters and energy parameters on the transition corridor is calculated. According to the calculation results, the effect of expanding the flight corridor of the UAV is more obvious when increasing the available power than when increasing the aerodynamic parameters by the same proportion.

Funder

Innovative Plan of the Compound

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. A Survey of Unmanned Aerial Vehicles (UAVs) for Traffic Monitoring;Kanistras,2015

2. The GRASP Multiple Micro-UAV Testbed;Michael;IEEE Robot. Autom. Mag.,2010

3. Development History of Helicopters;Li,2007

4. The technical characteristics and operational use of shipborne UAVs;Li;Mod. Mil.,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3