Author:
Wang Luyao,Zhang Hao,Xu Haiyan,Zhu Anfeng,Fan Hong,Wang Yankun
Abstract
The extraction of a road network is critical for city planning and has been widely studied in previous research using high resolution images, whereas the high cost of high-resolution remote sensing data and the complexity of its analysis also cause huge challenges for the extraction. The successful launch of a high resolution (130 m) nighttime remote sensing satellite, Luojia 1-01, provides great potential in the study of urban issues. This study attempted to extract city roads using a Luojia 1-01 nighttime lighting image. The urban regions were firstly distinguished through a threshold method. Then, an unsupervised PCNN (pulse coupled neural network) was established to extract the road networks in urban regions. A series of optimizing methods was proposed to enhance the image contrast and eliminate the residential regions along the roads. The final extraction results after optimizing were compared with OSM (OpenStreetMap) data, showing the high precision of the proposed approach with the accuracy rate reaching 83.2%. We also found the precision of city centers to be lower than suburban regions due to the influence of intensive human activities. Our study confirms the potential of Luojia 1-01 data in the extraction of city roads and provides new thought for more complex and microscopic study of city issues.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献