Extraction of City Roads Using Luojia 1-01 Nighttime Light Data

Author:

Wang Luyao,Zhang Hao,Xu Haiyan,Zhu Anfeng,Fan Hong,Wang Yankun

Abstract

The extraction of a road network is critical for city planning and has been widely studied in previous research using high resolution images, whereas the high cost of high-resolution remote sensing data and the complexity of its analysis also cause huge challenges for the extraction. The successful launch of a high resolution (130 m) nighttime remote sensing satellite, Luojia 1-01, provides great potential in the study of urban issues. This study attempted to extract city roads using a Luojia 1-01 nighttime lighting image. The urban regions were firstly distinguished through a threshold method. Then, an unsupervised PCNN (pulse coupled neural network) was established to extract the road networks in urban regions. A series of optimizing methods was proposed to enhance the image contrast and eliminate the residential regions along the roads. The final extraction results after optimizing were compared with OSM (OpenStreetMap) data, showing the high precision of the proposed approach with the accuracy rate reaching 83.2%. We also found the precision of city centers to be lower than suburban regions due to the influence of intensive human activities. Our study confirms the potential of Luojia 1-01 data in the extraction of city roads and provides new thought for more complex and microscopic study of city issues.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Evaluation of Automatic Road Extraction;Heipke;Int. Arch. Photogramm. Remote Sens.,1997

2. Road extraction from aerial and satellite images by dynamic programming

3. Automatic Road Extraction Based on Multi-Scale, Grouping, and Context;Baumgartner;Photogramm. Eng. Remote Sens.,1999

4. Self-organised clustering for road extraction in classified imagery

5. State of the art on automatic road extraction for GIS update: a novel classification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3