Decentralized Multi-Agent Control of a Manipulator in Continuous Task Learning

Author:

Shahid Asad Ali,Sesin Jorge Said Vidal,Pecioski Damjan,Braghin FrancescoORCID,Piga DarioORCID,Roveda LorisORCID

Abstract

Many real-world tasks require multiple agents to work together. When talking about multiple agents in robotics, it is usually referenced to multiple manipulators in collaboration to solve a given task, where each one is controlled by a single agent. However, due to the increasing development of modular and re-configurable robots, it is also important to investigate the possibility of implementing multi-agent controllers that learn how to manage the manipulator’s degrees of freedom (DoF) in separated clusters for the execution of a given application (e.g., being able to face faults or, partially, new kinematics configurations). Within this context, this paper focuses on the decentralization of the robot control action learning and (re)execution considering a generic multi-DoF manipulator. Indeed, the proposed framework employs a multi-agent paradigm and investigates how such a framework impacts the control action learning process. Multiple variations of the multi-agent framework have been proposed and tested in this research, comparing the achieved performance w.r.t. a centralized (i.e., single-agent) control action learning framework, previously proposed by some of the authors. As a case study, a manipulation task (i.e., grasping and lifting) of an unknown object (to the robot controller) has been considered for validation, employing a Franka EMIKA panda robot. The MuJoCo environment has been employed to implement and test the proposed multi-agent framework. The achieved results show that the proposed decentralized approach is capable of accelerating the learning process at the beginning with respect to the single-agent framework while also reducing the computational effort. In fact, when decentralizing the controller, it is shown that the number of variables involved in the action space can be efficiently separated into several groups and several agents. This simplifies the original complex problem into multiple ones, efficiently improving the task learning process.

Funder

H2020 CS2

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Modulated Adaptive Robotic Deposition: an Application to the Aerospace Industry;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

2. Curriculum-reinforcement learning on simulation platform of tendon-driven high-degree of freedom underactuated manipulator;Frontiers in Robotics and AI;2023-07-12

3. An overview of reinforcement learning techniques;2023 12th Mediterranean Conference on Embedded Computing (MECO);2023-06-06

4. Editorial of the Special Issue “Advances in Artificial Intelligence Methods Applications in Industrial Control Systems”;Applied Sciences;2022-12-20

5. Analytic Deep Neural Network-Based Robot Control;IEEE/ASME Transactions on Mechatronics;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3