Target State Classification by Attention-Based Branch Expansion Network

Author:

Zhang Yue,Sun Shengli,Liu Huikai,Lei LinjianORCID,Liu Gaorui,Lu Dehui

Abstract

The intelligent laboratory is an important carrier for the development of the manufacturing industry. In order to meet the technical state requirements of the laboratory and control the particle redundancy, the wearing state of personnel and the technical state of objects are very important observation indicators in the digital laboratory. We collect human and object state datasets, which present the state classification challenge of the staff and experimental tools. Humans and objects are especially important for scene understanding, especially those existing in scenarios that have an impact on the current task. Based on the characteristics of the above datasets—small inter-class distance and large intra-class distance—an attention-based branch expansion network (ABE) is proposed to distinguish confounding features. In order to achieve the best recognition effect by considering the network’s depth and width, we firstly carry out a multi-dimensional reorganization of the existing network structure to explore the influence of depth and width on feature expression by comparing four networks with different depths and widths. We apply channel and spatial attention to refine the features extracted by the four networks, which learn “what” and “where”, respectively, to focus. We find the best results lie in the parallel residual connection of the dual attention applied in stacked block mode. We conduct extensive ablation analysis, gain consistent improvements in classification performance on various datasets, demonstrate the effectiveness of the dual-attention-based branch expansion network, and show a wide range of applicability. It achieves comparable performance with the state of the art (SOTA) on the common dataset Trashnet, with an accuracy of 94.53%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Factors affecting characteristics of acoustic signals in particle impact noise detection for aerospace devices;Chen;Syst. Eng. Electron.,2013

2. Detecting loose particle signals in multichannel recordings with transductive confidence predictor

3. Recognizing manipulation actions from state-transformations;Aboubakr;arXiv,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3