Right-Hand Side Expanding Algorithm for Maximal Frequent Itemset Mining

Author:

Zhang Yalong,Yu Wei,Zhu Qiuqin,Ma Xuan,Ogura Hisakazu

Abstract

When it comes to association rule mining, all frequent itemsets are first found, and then the confidence level of association rules is calculated through the support degree of frequent itemsets. As all non-empty subsets in frequent itemsets are still frequent itemsets, all frequent itemsets can be acquired only by finding all maximal frequent itemsets (MFIs), whose supersets are not frequent itemsets. In this study, an algorithm, named right-hand side expanding (RHSE), which can accurately find all MFIs, was proposed. First, an Expanding Operation was designed, which, starting from any given frequent itemset, could add items using certain rules and form some supersets of given frequent itemsets. In addition, these supersets were all MFIs. Next, this operator was used to add items by taking all frequent 1-itemsets as the starting point alternately, and all MFIs were found in the end. Due to the special design of the Expanding Operation, each MFI could be found. Moreover, the path found was unique, which avoided the algorithm redundancy in temporal and spatial complexity. This algorithm, which has a high operating rate, is applicable to the big data of high-dimensional mass transactions as it is capable of avoiding the computing redundancy and finding all MFIs. In the end, a detailed experimental report on 10 open standard transaction sets was given in this study, including the big data calculation results of million-class transactions.

Funder

Zhejiang Basic Public Welfare Research Plan Projects

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovery of User Groups Densely Connecting Virtual and Physical Worlds in Event-Based Social Networks;International Journal of Information Technologies and Systems Approach;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3