Establishment and Application of a Monitoring Strategy for Living Modified Cotton in Natural Environments in South Korea

Author:

Lim Hye Song,Kim Il Ryong,Lee Sunghyeon,Choi WonkyunORCID,Yoon A-Mi,Lee Jung RoORCID

Abstract

Cotton (Gossypium hirsutum L.) is grown worldwide for its natural hollow fibers and is used as cattle feed. Living modified (LM) cotton is not cultivated in South Korea and must be imported for food, feed, and processing. From 2009 to 2013, the Ministry of Environment (MOE) and the National Institute of Ecology (NIE) conducted a natural environment monitoring and post-management initiative for living modified organisms (LMOs) in some areas to reduce the likelihood of harmful effects caused by unintentionally discharged LMOs during transportation and use. In this study, we adopted a new strategy to identify unintentionally released LM cotton plants nationwide from 2014 to 2018. A total of 451 suspicious cotton samples were collected from 3921 survey sites. Among them, we identified 255 LM cotton plants, of which approximately 72.2% had transgenic herbicide and insecticide traits. The majority of the samples were collected from the roadside along transportation routes and from stockbreeding farms. This study establishes an LMO safety management system to efficiently maintain conservation efforts in South Korea. Our findings suggest that these efforts may play a key role in safely transporting, using, and managing approved LMOs, as well as in regulating unintentionally released LMOs, in order to preserve the natural ecosystem of South Korea.

Funder

National Institute of Ecology (NIE), funded by the Ministry of Environment (MOE) of the Re-public of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3