Abstract
The application scenarios and market shares of industrial robots have been increasing in recent years, and with them comes a huge market and technical demand for industrial robot-monitoring system (IRMS). With the development of IoT and cloud computing technologies, industrial robot monitoring has entered the cloud computing era. However, the data of industrial robot-monitoring tasks have characteristics of large data volume and high information redundancy, and need to occupy a large amount of communication bandwidth in cloud computing architecture, so cloud-based IRMS has gradually become unable to meet its performance and cost requirements. Therefore, this work constructs edge–cloud architecture for the IRMS. The industrial robot-monitoring task will be executed in the form of workflow and the local monitor will allocate computing resources for the subtasks of the workflow by analyzing the current situation of the edge–cloud network. In this work, the allocation problem of industrial robot-monitoring workflow is modeled as a latency and cost bi-objective optimization problem, and its solution is based on the evolutionary algorithm of the heuristic improvement NSGA-II. The experimental results demonstrate that the proposed algorithm can find non-dominated solutions faster and be closer to the Pareto frontier of the problem. The monitor can select an effective solution in the Pareto frontier to meet the needs of the monitoring task.
Funder
National Key R&D Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献