Bi-Objective Optimization for Industrial Robotics Workflow Resource Allocation in an Edge–Cloud Environment

Author:

Xie XingjuORCID,Wu Xiaojun,Hu QiaoORCID

Abstract

The application scenarios and market shares of industrial robots have been increasing in recent years, and with them comes a huge market and technical demand for industrial robot-monitoring system (IRMS). With the development of IoT and cloud computing technologies, industrial robot monitoring has entered the cloud computing era. However, the data of industrial robot-monitoring tasks have characteristics of large data volume and high information redundancy, and need to occupy a large amount of communication bandwidth in cloud computing architecture, so cloud-based IRMS has gradually become unable to meet its performance and cost requirements. Therefore, this work constructs edge–cloud architecture for the IRMS. The industrial robot-monitoring task will be executed in the form of workflow and the local monitor will allocate computing resources for the subtasks of the workflow by analyzing the current situation of the edge–cloud network. In this work, the allocation problem of industrial robot-monitoring workflow is modeled as a latency and cost bi-objective optimization problem, and its solution is based on the evolutionary algorithm of the heuristic improvement NSGA-II. The experimental results demonstrate that the proposed algorithm can find non-dominated solutions faster and be closer to the Pareto frontier of the problem. The monitor can select an effective solution in the Pareto frontier to meet the needs of the monitoring task.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3