The Behaviour of Half-Slabs and Hollow-Core Slab in Four-Edge Supported Conditions

Author:

Zając JakubORCID,Drobiec ŁukaszORCID,Jasiński RadosławORCID,Wieczorek Mirosław,Mazur WojciechORCID,Grzyb KrzysztofORCID,Kisiołek ArturORCID

Abstract

In this study, qualitative tests were carried out to compare the behaviour of selected slabs exposed to short- and long-term loading. Full-scale models of the half-slab and hollow-core slab with dimensions of 6.30 m × 6.30 m, built of four different precast panels, were tested. The first two were semi-precast lattice girder slabs, the third semi-precast prestressed ribbed panels, and the last was composed of hollow-core panels. A common feature was the lack of joint reinforcement and the same modular width of 600 mm. The short-term load was applied sequentially in the first stage, and displacement was measured using an electronic method. In the second stage of long-term testing, the load was mainly applied to one part of the slab. Testing under short-term and long-term load allows determining the change in the performance of panel slabs over time. The panels maintained the ability of load redistribution based on their interaction despite the work of the longitudinal joints being only through the concrete cross-section. The behaviour of slabs with concrete topping shows more significant lateral interactions than elements connected only by shear key. Comparative calculations were made based on four computational models. Comparative analysis showed that the current design procedures lead to a safe but conservative estimation of the slab behaviour.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference66 articles.

1. The market of flooring systems in Poland

2. Multi-Storey Precast Concrete Framed Structures;Elliott,2014

3. Effects of Half-Precast Concrete Slab System on Construction Productivity

4. Precast Concrete Structures;Steinle,2019

5. Bending and Shear Strength of I-Slab with Polystyrene Forms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3