Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation

Author:

Bensaci Ramla,Khaldi BelalORCID,Aiadi Oussama,Benchabana Ayoub

Abstract

Automatic image annotation is an active field of research in which a set of annotations are automatically assigned to images based on their content. In literature, some works opted for handcrafted features and manual approaches of linking concepts to images, whereas some others involved convolutional neural networks (CNNs) as black boxes to solve the problem without external interference. In this work, we introduce a hybrid approach that combines the advantages of both CNN and the conventional concept-to-image assignment approaches. J-image segmentation (JSEG) is firstly used to segment the image into a set of homogeneous regions, then a CNN is employed to produce a rich feature descriptor per area, and then, vector of locally aggregated descriptors (VLAD) is applied to the extracted features to generate compact and unified descriptors. Thereafter, the not too deep clustering (N2D clustering) algorithm is performed to define local manifolds constituting the feature space, and finally, the semantic relatedness is calculated for both image–concept and concept–concept using KNN regression to better grasp the meaning of concepts and how they relate. Through a comprehensive experimental evaluation, our method has indicated a superiority over a wide range of recent related works by yielding F1 scores of 58.89% and 80.24% with the datasets Corel 5k and MSRC v2, respectively. Additionally, it demonstrated a relatively high capacity of learning more concepts with higher accuracy, which results in N+ of 212 and 22 with the datasets Corel 5k and MSRC v2, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference91 articles.

1. Automatic tagging by leveraging visual and annotated features in social media;Chen;IEEE Trans. Multimed.,2021

2. Unpaired Image Captioning With semantic-Constrained Self-Learning

3. Automatic Image Annotation and Retrieval Using Group Sparsity

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Twin neural network improved k-nearest neighbor regression;International Journal of Data Science and Analytics;2024-06-20

2. Hybrid time-spatial video saliency detection method to enhance human action recognition systems;Multimedia Tools and Applications;2024-02-14

3. Automated ISAR Image Quality Assessment;2023 IEEE International Radar Conference (RADAR);2023-11-06

4. An Adaptive Condition Monitoring Method of Wind Turbines Based on Multivariate State Estimation Technique and Continual Learning;IEEE Transactions on Instrumentation and Measurement;2023

5. Automatic Image Annotation Using Adaptive Convolutional Deep Learning Model;Intelligent Automation & Soft Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3