Abstract
Hybrid models to detect dementia based on Machine Learning can provide accurate diagnoses in individuals with neurological disorders and cognitive complications caused by Human Immunodeficiency Virus (HIV) infection. This study proposes a hybrid approach, using Machine Learning algorithms associated with the multicriteria method of Verbal Decision Analysis (VDA). Dementia, which affects many HIV-infected individuals, refers to neurodevelopmental and mental disorders. Some manuals standardize the information used in the correct detection of neurological disorders with cognitive complications. Among the most common manuals used are the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, 5th edition) of the American Psychiatric Association and the International Classification of Diseases, 10th edition (ICD-10)—both published by World Health Organization (WHO). The model is designed to explore the predictive of specific data. Furthermore, a well-defined database data set improves and optimizes the diagnostic models sought in the research.
Funder
National Counsel of Technological and Scientific Development
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献