Abstract
Most isolators have numerous displacements due to their low stiffness and damping properties. Accordingly, the supplementary damping systems have vital roles in damping enhancement and lower the isolation system displacement. Nevertheless, in many cases, even by utilising additional dampers in isolation systems, the occurrence of residual displacement is inevitable. To address this issue, in this study, a new smart type of bar hysteretic dampers equipped with shape memory alloy (SMA) bars with recentring features, as the supplementary damper, is introduced and investigated. In this regard, 630 numerical models of SMA-equipped bar hysteretic dampers (SMA-BHDs) were constructed based on experimental samples with different lengths, numbers, and cross sections of SMA bars. Furthermore, by utilising hysteresis curves and the corresponding ideal bilinear curves, the role of geometrical and mechanical parameters in the cyclic behaviour of SMA-BHDs was examined. Due to the deficiency of existing analytical models, proposed previously for steel bar hysteretic dampers (SBHDs), to estimate the first yield point displacement and post-yield stiffness ratio in SMA-BHDs accurately, new models were developed by the artificial neural network (ANN) and group method of data handling (GMDH) approaches. The results showed that, although the ANN models outperform GMDH ones, both ANN- and GMDH-based models can accurately estimate the linear and nonlinear behaviour of SMA-BHDs in pre- and post-yield parts with low errors and high accuracy and consistency.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献