Multi-Mode Active Suspension Control Based on a Genetic K-Means Clustering Linear Quadratic Algorithm

Author:

Wu KunORCID,Liu Jiang,Li Min,Liu Jianze,Wang Yushun

Abstract

The traditional Linear quadratic regulator (LQR) control algorithm depends too much on expert experience during the selection of weighting coefficients. To solve this problem, we proposed a Genetic K-means clustering Linear quadratic (GKL) algorithm. Firstly, a 2-DOF 1/4 vehicle model and road input model are established. The weights of an LQR controller are optimized using a genetic algorithm. Then, a possible weighting space is constructed based on this optimal solution. Random weighting coefficients of each performance index are generated in this space. Next, LQR control for the 1/4 vehicle model is performed, and the simulation data are recorded automatically, with these random weighting values, different road classes, and driving speed. A machine learning dataset is built from these simulations. Finally, a K-means clustering algorithm is used to classify the LQR control active suspension into three performance modes: safety mode, comprehensive mode, and comfort mode. The optimal weighting matrix of each performance mode is determined to satisfy requirements for different types of drivers. The results show that the new GKL algorithm not only improves the suspension control effect but also realizes different performance modes. It can better adapt to the changes in driving conditions and drivers.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3